TO: Voting Representatives and Alternates
of the High-Performance Wire and Cable Section (7-HW-L).

SUBJECT: Ballot to Approve Reaffirmation of WC 72-1999 (R2004, R2015)
Continuity of Coating Testing for Electrical Conductors

Dear Member:

This ballot is to approve reaffirmation of WC 72-1999 (R2020)
Continuity of Coating Testing for Electrical Conductors

If you choose not to use the electronic voting system, you may email or fax your vote to
Mr. Paul Crampton, Standards Approval Associate, at the address shown below. There is
no ballot to return. Simply provide the following information:

- Voting Representative Name
- Member Company
- Title of Ballot
- Response – approve, disapprove, not voting
- Any comments you wish to be considered

Mr. Crampton is responsible for conducting all NEMA Standards Bulletin ballots. If you
have any questions about the voting process, contact him. If you have any questions
about the content of the standards, contact me.

Sincerely,

Masri Khaled – Program Manager
Cc: Steve Griffith – Industry Director
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
CONTENTS

Foreword .. ii
Section 1 General .. 1
1.1 Scope ... 1
1.2 References .. 1

Section 2 Background for Development of WC 72 .. 2

Section 3 Industry Problems and Observations ... 3

Section 4 The "White Card" Continuity of Coating Test. .. 4
4.1 Procedure .. 4
4.2 Examination of Finished/Insulated Product .. 4

Section 5 Summary and Conclusions .. 5
Foreword

This standard has been developed by the Polysulfide Task Force of the Aerospace Subcommittee (members as listed below) of the High Performance Wire and Cable Section of NEMA in close coordination between manufacturers, users, third party certifying agencies and others having specialized experience. The Aerospace Subcommittee of the High Performance Wire and Cable Section of NEMA periodically reviews this standard for any revisions necessary to keep it up to date. Proposed revisions or comments should be submitted to:

Senior Technical Director, Operations
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, Virginia 22209

Members of NEMA High Performance Wire and Cable Section that participated in the development of this standard were:

Alcatel—Elm City, NC
Barcel/CDT—Irvine, CA
BICC Brand-Rex Company—Willimantic, CT
Cable USA—Naples, FL
Judd Wire Inc.—Turner Falls, MA
Montrose/CDT—Auburn, MA
Phelps Dodge PHC—Lexington, SC
Quirk Wire—W. Brookfield, MA
Radix Wire—Cleveland, OH
Raychem Corp.—Menlo Park, CA
Rockbestos-Surpremant Corp.—Clinton, MA
Tensolite Company—St. Augustine, FL
Section 1
GENERAL

1.1 SCOPE

This standards publication contains a review of the problems that have occurred when polysulfide testing has been improperly imposed on tin, silver and nickel coated copper and copper alloy stranded conductors or on tin, silver or nickel coated copper and copper alloy single or stranded conductors after insulating. The Sodium Polysulfide Test is a materials inspection test, not a finished wire or cable test, and should only be imposed on a single strand/conductor prior to stranding or insulating. A new test, called the “white card” continuity of coating test, is presented as a solution to these problems and can also be utilized on shield wires. This new test is referenced in ANSI/NEMA WC 67.

1.2 REFERENCED STANDARDS

American Society of Testing Materials
100 Barr Harbor Drive
West Conshohocken, Pennsylvania 19428-2959

ASTM B33-94 Standard Specification for Tinned Soft or Annealed Copper Wire for Electrical Purposes

ASTM B298-94 Standard Specification for Silver-Coated Soft or Annealed Copper Wire

ASTM B355-95 Standard Specification for Nickel-Coated Soft or Annealed Copper Wire

National Electrical Manufacturers Association
1300 North 17th Street
Suite 900
Rosslyn, Virginia 22209

ANSI/NEMA Standard for Uninsulated Conductors Used in Electrical and Electronic Applications

© 2015 National Electrical Manufacturers Association
Section 2
BACKGROUND FOR DEVELOPMENT OF WC 72

The Sodium Polysulfide Test is the standard continuity of coating described in ASTM Standards such as B33, B298, and B355. The only purpose of this test is to evaluate the tin, silver or nickel coating of a single strand/conductor after the drawing process. However, this test has a variety of problems and limitations:

a. This test is performed in a laboratory and is not practical for use on a production floor.

b. This test uses corrosive chemicals that require special handling, safety precautions and proper hazardous waste disposal.

c. The coating of stranded conductors cannot be properly evaluated.

d. The coating of an insulated single or stranded conductor cannot be properly evaluated.

e. The Sodium Polysulfide Test cannot be used to evaluate the coating of braided or served shields, whether round or flat.
Section 3
INDUSTRY PROBLEMS AND OBSERVATIONS

The Sodium Polysulfide Test for continuity of coating has been the primary method for evaluating the coatings of tin, silver, and nickel coated copper and copper alloy wires for many years. In the referenced ASTM Standards, the proper application is to test single strands/conductors prior to any stranding or insulating. Over the years, however, this test has been misapplied in attempts to evaluate the coating of stranded conductors, of insulated single and stranded conductors, of wires after humidity tests and of braided and served shield wires. Although these wires can be physically tested, the act of preparing the samples for testing can damage the coating, thus creating false readings. In addition, the effects of lighting and reflectance on stranded conductors can be misinterpreted as failures.

Magnification has also been incorrectly used to examine wires as part of the polysulfide test. While strand/conductor coatings inherently have a degree of porosity, microscopic examination is beyond the scope of this test. To the best knowledge of those who developed this standard, there is no known evidence of microscopic coating discontinuities having been a source of wire failures in service.
Section 4
THE "WHITE CARD" CONTINUITY OF COATING TEST

4.1 PROCEDURE

Check the wire in a well-lighted area (using white light whenever possible). Look at the wire on the spool with an unaided eye and also by holding a white index card against the surface of the wire. Roll the spool to make sure that the entire exposed surface of the wire is examined. Check for exposed copper or base metal along one side of the specimen. Due to excessive localized abrasion during stranding, shielding or cabling, any patterns of exposed copper or continuous lines shall be grounds for rejection.

The examination is intended to detect excessive damage. Random point failures shall not be cause for rejection.

4.2 EXAMINATION OF FINISHED/INSULATED PRODUCT

If this procedure is used for examination of insulated or finished product, a 4" test specimen of product shall be available for examination. Care should be taken to ensure that any failure pattern was not generated by the specimen preparation. Note that spurious readings can occur due to reflections from any non-white surface.
Section 5
SUMMARY AND CONCLUSIONS

The "white card" test addresses the limitations and problems with the Sodium Polysulfide Test, as presented in Sections 2 and 3, while maintaining the expected quality of the coating continuity. Those who have utilized this test at their facilities have found it to be simple, reliable and a valid test for stranded conductors and shields.

§