CLOSING DATE: July 17, 2020

TO: Voting Representatives And Alternates
Of The Aerospace Committee of 7HW High Performance Section

SUBJECT: Letter Ballot to Approve reaffirmation of WC 61 “Transfer Impedance Testing”

Dear Member:

This standard is being balloted as a reaffirmation WC 61 “Transfer Impedance Testing”

Please consider this issue carefully and mark your response on the ballot. If you want a copy of the ballot for your files, click on “print” before clicking on “submit.”

If you choose not to use the electronic voting system, you may email or fax your vote to Mr. Paul Crampton, Standards Approval Associate, at the address shown below. There is no ballot to return. Simply provide the following information:

- Voting Representative Name
- Member Company
- Title of Ballot
- Response – approve, disapprove, not voting
- Any comments you wish to be considered

Mr. Crampton is responsible for conducting all NEMA Standards Bulletin ballots. If you have any questions about the voting process, contact him. If you have any questions about the content of the standards, contact me.

Sincerely,

Khaled Masri – Program Manager

Cc: Steve Griffith
ANSI/NEMA Standards Publication WC 61-2005

Transfer Impedance Testing

Published by:

National Electrical Manufacturers Association
1300 North 17th Street, Suite 1847
Rosslyn, Virginia 22209
www.nema.org

© Copyright 2005 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
CONTENTS

Foreword ... ii
Scope ... iv

Section 1 REFERENCED DOCUMENTS... 1
1.1 Referenced Documents and Publications ... 1

Section 2 GENERAL .. 2
2.1 Precision and Bias ... 2
2.2 Significance and Use .. 2

Section 3 SAMPLE PREPARATION .. 3
3.1 General .. 3
3.2 Sample Preparation ... 3
 3.2.1 Circuit Verification ... 8
 3.2.2 DC Resistance (dcR) of the Shield ... 8

Section 4 TEST PROCEDURE .. 9
4.1 General ... 9
4.2 Cable Measurement ... 9
4.3 Calculation of Transfer Impedance ... 9
4.4 Verification of Dynamic Range .. 10
Foreword

In December 1985, the NEMA Electronic Wire and Cable Technical Committee decided to evaluate transfer impedance test procedures. The goal was to establish measurements of shield effectiveness that would provide correlation among manufacturers and end-users. A series of four round robin test programs were performed in conjunction with technical discussions about the merits of different test procedures. This program led to the development of a NEMA Transfer Impedance Test Procedure. The test program and discussions are summarized below.

First Round Robin Test—Results published in minutes of NEMA Ad Hoc Task Force on Transfer Impedance Testing, April 8, 1986. Six manufacturers tested the transfer impedance of coaxial and twisted pair samples shielded with copper tubes. No specific test method was called out, but MIL-C-85485 and the terminated triaxial fixture were the only procedures used. Correlation between test facilities and methods was sufficient to encourage testing of production cables rather than lab constructions.

Second Round Robin Test—Final results published in the minutes of the NEMA Electronic Wire and Cable Technical Committee Meeting, December 10, 1986. Samples of RG-213 and RG-58 from one lot of one source were evaluated by eight manufacturers. Correlation was not good. In some cases, the same manufacturer got varying results on the same cable type. The frequency limitations of both the terminated triaxial and the MIL-C-85485 methods became obvious.

Third Round Robin Test—Results published in Conference Report of Ad Hoc Task Force on Transfer Impedance Meeting, September 28, 1987. Samples of RO-58 and RG-213 shielded with a steel tube were prepared by Belden and tested by seven manufacturers. This shielding was chosen because its transfer impedance could be calculated. Each company prepared its samples for testing per MIL-C-85485. After testing, these samples were circulated to other participants in the program. The data showed that different facilities got close results on the same samples. This implied that measurement equipment was not the significant source of the errors. This was no surprise because this transfer impedance measurement is an insertion lost test. The data demonstrated the theoretical upper frequency limit of the MIL-C-85485 method as described in the referenced paper by A. Martin and M. Mendenhall. That paper and additional testing by the Task Force suggested that the upper frequency limit could be extended from 30 MHz to 100 MHz by testing shorter samples. The most significant source of error in the test was determined to be sample preparation.

Fourth Round Robin Test—Results published in the Conference Report of Ad Hoc Task Force on Transfer Impedance Meeting, March 9, 1988. Spectra-Snip built MIL-C85485 type 1/3 m transfer impedance fixtures. These were submitted as a standard for measurement. Four companies tested the fixtures and the correlation up to 100 MHz was excellent. The data established that different test facilities testing identically constructed stable devices would achieve the theoretical results.

Conclusion—This procedure is an effective tool for comparing shield effectiveness. Different shields over the same core, coaxial and twisted pairs, can be quantified and ranked logically. Results are repeatable. However, the method does have inherent limitations, but within its range, results can be verified with other test methods. This procedure is recommended as an efficient, effective means of evaluating cable shield performance.
This Standards Publication input of users and other interested parties has been sought and evaluated. Inquiries, comments, and proposed or recommended revisions should be submitted to the concerned NEMA product subdivision by contacting the:

Vice President, Technical Services
National Electrical Manufacturers Association
1300 North 17th Street
Rosslyn, Virginia 22209
SCOPE

This standard is intended to provide a reliable surface transfer impedance test method for coaxial cables and shielded multiconductor cables over the frequency range from DC to 100 MHz.
Section 1
REFERENCED DOCUMENTS

1.1 REFERENCED DOCUMENTS AND PUBLICATIONS

International Electrotechnical Commission
3, rue de Varembé
P.O. Box 131
CH - 1211 Geneva 20
Switzerland

IEC 60096 Radio-Frequency Cables

Available from:
American National Standards Institute
1819 L Street, NW
Washington, DC 20036

Navy Publishing and Printing
Service Office
700 Robbins Avenue
Philadelphia, PA 19111-5094

MIL-DTL-24640B Military Specification for Cable and Cord, Low Smoke, Lightweight, for Shipboard Use

MIL-DTL-24643B Military Specification for Cable and Cord, Low Smoke, for Shipboard Use

MIL-C-85485A Cable, Electric, Filter Line Radio Frequency

Institute of Electrical and Electronics Engineers
445 Hoes Lane
Piscataway, NJ 08854

EMC-26 No. 2 IEEE Transactions on Electromagnetic Compatibility Volume.
Section 2
GENERAL

2.1 PRECISION AND BIAS

When samples are prepared and tested in accordance with this procedure, different laboratories using different (but appropriate) equipment can expect to get similar results. The differences found in the NEMA round robin test program which produced this procedure were generally less than 20%. Significant differences in test results were most commonly a result of problems with samples preparation.

Samples shorter than 1/3 m are not recommended because of difficulties with accurate sample preparation and termination errors. The 1 m sample is recommended for all measurements up to 30 MHz. The 1/3 m samples may be used up to 100 MHz.

2.2 SIGNIFICANCE AND USE

Transfer impedance data generated via this test procedure may be used by both users and manufacturers to classify relative EMI/EMC performance of different shields.

Additionally, EMP response may be related to Transfer Impedance using the following formula:

\[
\text{EMP response} = (-185) - 10 \log \int_0^r \left[\frac{Z_t(f)}{\left(\alpha^2 + f^2 \right)} \right]^2 \left(\frac{df}{B^2 + f^2} \right) dB
\]

Where:

- \(Z_t(f) \) = surface transfer impedance at frequency (f) (ohms/m)
- \(\alpha = 2.39 \times 10^5 \)
- \(B = 4.12 \times 10^7 \)
- \(f \) = frequency (Hz)
- \(F \) = upper frequency limit 100 MHz for ½ m length; 30 MHz for 1 m length

Assume that \(Z_t \) is constant in the frequency range DC to 0.1 MHz.

The MIL-C-85485 test procedure itself does not delineate frequency limitations or caution the tester about potential pitfalls. The method as modified by this test procedure addresses both of these issues. It formulates the relationship between sample length and maximum frequency limit. Correct sample preparation can be verified using shield DC resistance. The NEMA test procedure refines MIL-C-85485 and offers a simple, accurate, and reproducible method for cable shield evaluation.
Section 3
SAMPLE PREPARATION

3.1 GENERAL
Sample preparation provides the greatest opportunity for introducing error into transfer impedance measurement. By using DC resistance as a benchmark, the validity of the test can be demonstrated. Close adherence to lengths of samples and proper soldering technique will yield good samples. The amount of shield under test is critical. The distance between short circuits, whether 1.0 or .33 m, must be as accurate as possible. The specific amount of cable beyond these short circuits will not affect the measurement but should be kept as short as possible.

Though MIL-C-85485 specifies Type TNC connectors, other coaxial connectors such as Type BNC or Type N may be substituted as determined by cable size.

3.2 SAMPLE PREPARATION
For a 1 m sample, approximately 4 ft (1.22 m) of cable shall be used. For 1/3 m sample, approximately 2 ft (0.61 m) of the cable shall be used. Sample preparation shall be as follows:

Approximately 3 in. (7.6 cm) of the cable jacket shall be removed from one end of the cable (end "A") and the shield pushed back to expose the insulated conductors. The insulation shall be removed from the conductors to within 1 in. (2.54 cm) of the pushed back shield as shown in Figure 3-1.

For multiconductor cable, all the conductors shall be connected together and these connected wires shall be referred to as "the conductor." The shield shall then be pulled forward over the remaining insulation and soldered to the conductor. The shield shall completely enclose the insulated conductor, shall be soldered around 360 degrees of the conductor, and all disturbed portions of the shield shall be well-soldered. The conductor shall extend beyond the soldered join and shall be formed and trimmed so as to be able to be soldered into the center pin of the connector such as with a jack to jack adaptor as shown in Figure 3-1.

Excess shield, beyond the solder joint, shall be removed and the center pin shall be attached to the conductor so that the pin is within 1/2 in. (1.27 cm) of the soldered joint. A piece of shrink tubing or other appropriate material shall be applied over the soldered joint to insulate the joint (see Figure 3-1).

The center pin shall then be inserted into the connector as shown in Figure 3-1. A bare coated copper outer braid having 90% minimum coverage shall be pulled over the entire length of the cable and shall extend halfway over the connector. The outer braid shall then be soldered to the connector, making sure that a 360 degree solder joint is formed (see Figure 3-1). Shrink tubing or other appropriate materials, shall be applied over the entire length of the outer braid ensuring that the outer braid is pressed firmly and consistently to the jacket of the cable (see Figure 3-1).

During the application of the joint insulating material, outer braid and overall material, the exact location of the soldered joint between the shield and conductor shall be noted by marking each layer at that location in a suitable manner (see Figure 3-1). The other end of the cable, with the outer braid and overall material applied, shall be terminated in the following manner: For the 1 m specimen at a distance of 38 in. (0.96 m) (or 11 in. (28 cm) for the 1/3 m specimen) from the mark on the tubing which indicates the location of the shield to conductor joint, the material covering the outer braid shall be cut circumferentially. Remove all material further than 38 in. (0.96 m) from that mark (or 11 in. (0.28) for the 1/3 m sample). The exposed outer braid shall be cut back to within 2 in. (5.08 cm) of the outer covering and the severed braid shall be removed. The remaining 2 in. (5.08 cm) of outer braid shall then be pushed back to expose the
cable underneath. A circumferential section of the cable jacket shall be window-stripped for a distance of 1/2 in. (1.27 cm) to expose the shield under test. The center of the window cut in the cable jacket shall be 39.37 ± 0.25 in. (100 ± 0.64 cm) for a maximum frequency of MHz, or 13.12 ± 0.25 in. (33.33 ± 0.64 cm) for a frequency of 100 MHz.

The "B" end of the cable shall then be cut and prepared for termination, as shown in Figure 3-2, with a connector such that the distance from the backshell on end "B" to the window in the cable jacket is 1/4 to 1/2 in. (0.64 to 1.27 cm). The connector shall be installed and the outer braid pulled forward over the exposed cable shield. The shield and outer braid shall be soldered together for 360° around the cable as shown in Figure 3-2, Step 2. Any excess outer braid between the solder joint and the connector shall be removed. The joint between the outer braid and shield shall be insulated with shrink tubing or other appropriate material as shown in Figure 3-2.
Figure 3-1
CONSTRUCTION OF SAMPLE CABLE
Figure 3-2
DIAGRAM OF CABLE TERMINATION
Figure 3-3
END “B” CONNECTION TO TDR – TDR RESPONSE

Figure 3-4
END “A” CONNECTION TO TDR – TDR RESPONSE
3.2.1 CIRCUIT VERIFICATION

Points where short circuits to the shield under test are made must be soldered circumferentially. Connectors should be applied with utmost care. By examining the sample from both ends with a TDR, one can easily determine whether the connectors themselves have been inadvertently shorted out.

3.2.2 DC RESISTANCE (dcR) of the SHIELD

dcR can be used to give confidence in a transfer impedance curve. The portion of the Z_t curve below 100 KHz will correspond to both the measured and calculated values for dcR. The dcR can be calculated as shown below.

A single round wire braid which would have response calculated from:

$$R = \frac{N d^2 R_s}{\pi (D + 2d) \cos \alpha}$$

Where:

- N = the total number of braid wire ends
- d = the diameter of a single strand
- D = the diameter under the shield
- R_s = the resistivity of the braid material
- α = the braid angle

Calculated or measured R of the shield under test shall be within 20% of the measured transfer impedance value at 100 KHz
Section 4
TEST PROCEDURE

4.1 GENERAL
This measurement procedure is suitable for use with a spectrum analyzer and tracking generator. Other instruments shown to be of equal accuracy to those described below may be used. This test procedure is an attenuation measurement from which the transfer impedance is calculated.

4.2 CABLE MEASUREMENT
Measurement shall be carried out on calibrated equipment. A suggested method of verifying dynamic range is using fixed or variable attenuator with a 1% or greater accuracy.

The end of the cable designated as end “A” shall be attached to the single generator via a 10 dB pad during the measurement. End “B” of the cable shall be attached to the detector during the measurement.

4.3 CALCULATION OF TRANSFER IMPEDANCE
Unless otherwise specified, 100 points uniformly spaced throughout a decade of frequency, and including the beginning and end of the decade, shall be taken for each decade of frequency range specified.

Transfer impedance shall be calculated using the following formula:

\[S = A_u - \frac{T Y}{h} \, dB \]

Where:
S = resulting trace on the screen (attenuator in dB)
A_u = attenuator setting used to produce the calibration trace immediately above trace S
T = difference in attenuation setting for two consecutive settings for two consecutive calibration traces
Y = distance on the screen between traces A_u and S
h = distance on the screen between trace A_u and the calibration trace immediately below trace S

The surface transfer impedance \(Z_t \) shall be given by:

\[Z_t = \frac{Z_0}{2L} \sqrt{P} \, \text{ohms/meters} \]

Where:
\(Z_0 \) = characteristic impedance of the spectrum analyzer and tracking generator
L = length of sample (.33 or 1 m)
P = 10 \(^{3/10}\)
4.4 VERIFICATION OF DYNAMIC RANGE

4.4.1 Connect the equipment as show in Figure 4-1, substituting the variable attenuator for the sample.

4.4.2 Following the manufacturer's instructions, set up the frequency generator and spectrum analyzer to operate over the frequency range specified for the sample under test. The display sensitivity should be consistent with the range of loss being measured.

4.4.3 Adjust the calibrated attenuator to a value which is at least 5 dB less than the minimum value specified for the sample under test and is an even multiple of 5 dB.

Example: When using equation in Clause 4.3, if the minimum specified transfer impedance convert to 51 dB, see the variable attenuator for a value of 45 dB.

4.4.4 Increase the value of the calibrated attenuator in 5 dB increments to a value that is at least 5 dB greater than the maximum value specified for the sample under test.
Figure 4-1
CONFIGURATION OF THE MEASUREMENT SYSTEM FOR DETERMINING SURFACE TRANSFER IMPEDANCE